
MNHN-Tree-Tools: Supplement

1 Introduction

MNHN-Tree-Tools is a new suite of tools
that allow us to cluster sequences and build
phylogenetic trees from datasets containing
nucleic and experimentally, amino acid se-
quences. MNHN-Tree-Tools are based on
an iterative, adaptive version of the density-
based algorithm for discovering clusters in
large spatial databases with noise (DBSCAN)
[4] algorithm and are further optimized to
take advantage of Single Instruction Multiple
Data (SIMD) instructions, Graphics Process-
ing Units (GPU)s, multi-threading and multi-
node High Performance Computing (HPC) ar-
chitectures. Working around and adapting the
well known DBSCAN clustering algorithm al-
lows us to gain insights into the evolution of se-
quences and to build phylogenetic dependency
graphs ultimately leading to trees.

In this document we provide a detailed
overview of the algorithm. We present how
we evaluate the performances of our tool us-
ing two available annotated datasets: α satel-
lites in humans [19] and the Tree of Life (ToL)
from the SILVA project which uses 16S/18S
ribosomal RNA as an Operational Taxonomic
Unit (OTU) [14]. Finally we provide further
insights into the introduced methods by ap-
plying them on computer generated sequences
resulting from virtual evolution simulations.

2 Algorithm
2.1 Motivation and aims
Many applications in natural history require
a researcher to group related sequences into
”families”. In order to do this we first have to
provide a clear definition of a sequence family
and its representation. Afterwards we outline
how we can automatically identify a sequence
family in an algorithmic fashion.

We first define a sequence space KS to be
an finite dimensional field. We then define a
distance measure between two sequences d as
a function that yields only positive real results.
Hence,

d : KS ×KS → R+. (1)

We propose that a family of sequences, which
arises from an evolutionary process is repre-
sented by a density peak in such a sequence
space, a confined region R(ρ) where local se-
quence distances are smaller than on the sur-
face S(R(ρ)). ρ being the density limit for R to
form a connected region, and thus the density
on the surface:

∀r ∈ S(R(ρ)) : ρ(r) = ρ, (2)

and within the regions:

∀r ∈ R(ρ) : ρ(r) ≥ ρ, (3)

where r ∈ KS represents a sequence in our se-
quence space. The DBSCAN algorithm can
find ensembles for a given density defined by
the number of sequences to be found in a neigh-
bourhood defined by the radius ε. With the
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volume V of the ε-ball:

ρ(minpts, ε) =
minpts

V (ε)
, (4)

dependent on the measure d in equation (1)
DBSCAN finds connected regions, clusters of
sequences, R1(ρ) . . . Rn(ρ) with a density ≥
ρ(minpts, ε). As dense regions shall be em-
bedded into less dense regions we further
sketch that for l,m ≤ n and for an arbitrary
set of chosen found regions R(ρ)l . . . R(ρ)m
there exists a radius ε′ > ε and hence, a
density ρ′(minpts, ε′) < ρ(minpts, ε) so that
R(ρ)l . . . R(ρ)m ∈ R′(ρ′), with R′(ρ′) being
a region, cluster of sequences, found by DB-
SCAN with input parameters minpts and ε′.
Reasoning from the above shows that clusters
can only be discovered, grown or merged as
the density in equation (4) is decreased while
the ε is increased. From the sketch outlined it
directly follows that for two discovered regions
R1(ρ) = {r1, . . . , rk} and R2(ρ) = {ru, . . . , rv},
holding sequences ri only the following out-
comes, at decreased density ρ′ and hence in-
creased ε′, compared to a prior situation can
exist:

1. A new region R3(ρ
′) is formed and the re-

gions R1(ρ) and R2(ρ) merge and hence:

R3(ρ
′) = [R1(ρ) ∪R2(ρ)] ∪R+(ρ

′), (5)

where R+ has either no elements or hold
elements not found in R1 or R2.

2. The regions expand:

R1a(ρ
′) = R1(ρ) ∪R1+(ρ

′),

R2a(ρ
′) = R2(ρ) ∪R2+(ρ

′), (6)

with R1+ and R2+ holding either no se-
quences or sequences that are were not
found in R1 or R2.

Further it is clear that, at such a decrease in
density, new regions independent from R1 and
R2 can be discovered.

ε+Δε

ε

Figure 1: Sequence families in the se-
quence space are recovered by the DB-
SCAN algorithm As ε increases by ∆ε the
density that is required to form a cluster de-
creases and the blue and orange cluster are
merged.

A tree of related sequences can be built per-
forming DBSCAN clustering runs for different
density values and by merging related clusters
as shown in figure 1. Such a tree can be used
to guide phylogenetics as we will discuss later
in section 2.2. The rational behind figure 1 is
that sequence families form dense ensembles in
sequence space as outlined by the blue and or-
ange sequence families. A DBSCAN run with a
well chosen ε can, together with an appropriate
minpts value, distinguish both families and at-
tribute them to separate clusters. Performing a
successive DBSCAN run with an increased ep-
silon ε+∆ε value captures less dense connected
ensembles at a same minpts value and there-
fore, assuming that ∆ε is large enough, both
the orange and blue families are attributed to
a single family. Hence, we can build a phy-
logenetic tree from density connected clusters
found by successive DBSCAN runs with in-
creased ε parameters and a cluster comparison
step as outlined in figure 4.
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We illustrated the way our algorithm cap-
tures and builds trees in figure 2. In the left
image of figure 2 a typical sequence space en-
countered by our algorithm is shown. High-
lighted are three dense areas, orange, purple
and green regions that are representing high
sequence count and conservation. The pur-
ple and green regions are embedded into a less
dense blue region. Further a disconnected red
region of about the same density as the blue
region is shown. In the right image the algo-
rithm starts at a small ε and will at first detect
the very dense green, purple and orange clus-
ters representing the rightmost leaves of our
tree. As in the following steps ε increases, less
dense regions are discovered and the blue and
red families, that incorporate the previous de-
tected clusters, are found. The green and pur-
ple clusters are embedded into the blue clus-
ter and tree branches are formed accordingly.
In the left section of the right image finally a
single cluster representing the whole dataset is
shown. This is the root of the tree.

2.2 Evolutionary families and statis-
tical clusters

For improved clarity we introduce the distinc-
tion between evolutionary families and statis-
tical clusters:

• Evolutionary family: Represents an en-
semble of proximal sequences that have
emerged from an evolutionary process.
Hence, sequences that are descending from
a previously amplified (multiplied) se-
quence, and are mutations (a diffusion)
of thereof. As such we can further define
subfamilies which correspond to amplifica-
tions of such mutations and the mutations
of such amplifications. The chain of these
families yields a hierarchical structure of
families and subfamilies. These amplifica-
tion events are hard to grasp or due to the

high mutation rate over a long past and
because of the underlying rise in entropy
not statistically accessible.

• Statistical cluster: Is an ensemble of se-
quences that cluster together for a given
density. Herein we use a density and
monotony based description. A cluster is
the ensemble of sequences around a local
density maximum in sequence space. All
sequences around this maximum shall be-
long to the same cluster as long as the den-
sity surrounding this point is either mono-
tonically decreasing or stable. Statistical
clusters can as such be captured using the
DBSCAN algorithm.

As such, a relationship between statistical clus-
ters found within a dataset and evolutionary
families does not hold for all imaginable evo-
lutionary families. We nevertheless stipulate,
and show using simulations, that the statis-
tical clusters found, have an inherent relation-
ship to amplification-mutation (multiplication-
diffusion) based models of evolution such as the
Jukes and Cantor 1969 (JC69) model [10] or
derived more recent models [5, 8, 12, 17, 18].
The capture of evolutionary families in statis-
tical clusters is further discussed in figure 3.

2.3 Distance measures between se-
quences

We implemented our algorithm using two dif-
ferent distance measures, d in equation (1).
The first one is a distance measure based on
the k-mer representation of the sequences fol-
lowed by principal component analysis (PCA).
[2]. The second one is a custom implementa-
tion of the Smith Waterman distance [15].

2.3.1 K-mer based distance

To compute the k-mer based distance we first
transform the input sequences into frequen-
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Figure 2: An illustration motivating our algorithm: Left: An ensemble of sequences
forming clusters at various densities. Orange, green and purple are found at high densities
whereas the blue and red clusters are found at lower densities. The blue cluster encompasses
the green and purple points. Right: A sequence tree built from the correspondences between
clusters found at various density values.
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Figure 3: The discernibly of statistical se-
quence clusters in sequence space KS : The fig-
ure on the left contains two sequence clusters
while the figure on the right contains only a
single cluster of sequences as no further surface
S(R(ρ)) can be found that is able to clearly de-
limit R for the a second peak.

cies of occurring sub-sequences of size k and
perform PCA on the vectors obtained. The
distance is then evaluated by calculating the
L2 distance in a reduced subspace spun by
the principal components. In order for the
DBSCAN algorithm to perform in an efficient
manner we suggest to project k-mer frequency
vectors onto the first 7 principal components,
though the researcher can adapt this value to
his own information capture / curse of dimen-
sionality tradeoff. For completeness direct L1

and L2 k-mer based distances without PCA
were also implemented.

Calculations operating on the PCA subspace
are the fastest due to the reduced dimension-
ality. These calculations further offer the ad-
vantage of a PCA based feature selection. This
is outlined by the application of our algorithm
on simulated datasets in section 4.1.

2.3.2 Smith Waterman distance

Besides the above outlined k-mer and PCA
based distance we have implemented a Smith
Waterman based distance measure [15]. The
algorithm was implemented in a straight for-
ward fashion as follows: We compute the
Smith-Waterman Matrix [15] by initializing
the first row and first column with zeros and
apply the following recurrence relation:

c1 = M(j − 1, i− 1)

+ xch(A[i], B[j]),

c2 = M(j, i− 1)− 3,

c3 = M(j − 1, i)− 3,

M(i, j) = max(c1, c2, c3), (7)

where M(i, j) represents the Smith-Waterman
matrix, A[i] and B[i] the nucleotide of sequence
A and B at position i respectively. xch, the
nucleotide exchange penalty, yields 4 if the
A[i], B[j] hold the same nucleotide base and -4
otherwise. We evaluate a theoretical maximum
F of the matrix by taking the longer sequences
of A and B and multiplying the length by four:

F = 4maxlength(A,B), (8)

and define the distance between the sequences
A and B to be:

D(A,B) = F −max(M(i, j)). (9)

D(A,B) resolves to 0 if the sequences A and
B are identical and to a positive distance
otherwise. As the evaluation of the Smith
Waterman distance is computationally expen-
sive we implemented it in OpenCL [16] allow-
ing for execution on GPUs. Our algorithm
can further make use of the Message Passing
Interface (MPI) library [6] to distribute the
workloads across high performance computing
(HPC) cluster nodes.
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2.4 Algorithm details

With the theory at hand we implemented an
algorithm that allows us to detect statistical
clusters of various densities. In varying the
density ρ by modifying the ε parameter of the
DBSCAN algorithm and comparing clusters
obtained from such different runs we imple-
mented a tree building algorithm as outlined
in figure 4. As pointed out by the figure the
algorithm requires three input parameters. ε
the initial epsilon neighborhood radius for the
DBSCAN algorithm, ∆ε the increase of ε in
every step and minpts the minimal number
of points to be found in an epsilon neigbour-
hood to either extend or create a cluster. n
in figure 4 represents the number of clusters
found by the current DBSCAN run, n(prev)
the number of clusters from the previous run
and t the step number and hence, how often
DBSCAN has been run. The algorithm starts
with a small intial ε value in order to find very
dense clusters of nucleic sequences and hence,
clusters that are highly conserved in sequence.
In increasing the ε of DBSCAN in successive
runs, the clusters are built from less and less
conserved sequences, and basically fusion from
layer to layer, until DBSCAN just detects a
single cluster, the root of the tree.

2.5 Tree Building and Cluster Com-
parison

As outlined above, our procedure to build a
tree from a set of sequences relies on three pa-
rameters. We need to specify the values for εo,
the smallest radius defining the neighborhood
that the DBSCAN algorithm uses to search for
neighboring points, ∆ε, the increment to this
radius from one step to the next, and minpts,
the minimum number of points that has to re-
side inside an epsilon neighborhood for cluster
formation or expansion.

Going back to figure 3, it is straightforward

to see that for the distribution on the left there
exists an ε, minpts combination so that both
families form their own clusters in a DBSCAN
clustering approach. It is further noticeable
that by increasing ε such that ε1 > ε that the
density defined by our ε1, minpts couple has
decreased to a point where the DBSCAN algo-
rithm will only detect a single cluster contain-
ing both clusters of the prior ε, minpts couple.

With this knowledge at hand, our algorithm
starts at ε0, stores the clusters, increases ε0 by
i∆ε until it finds less clusters than in the previ-
ous step. In this way obtain an ensemble of εi
for i = [0, n] such that the number of clusters
for εi is bigger than the number of clusters for
εi+1 until at εn the DBSCAN algorithm only
finds a single cluster. In order to build our tree
now we see all these clusters as nodes, and con-
nect a node of a layer of clusters corresponding
to εi+1 to a node of a layer of clusters εi if it
the node at εi+1 contains at least 80% of the se-
quences of the node at εi. This whole iterative
algorithm is highlighted in figure 4.

3 Application on experimen-
tal datasets

3.1 Description of the datasets
We tried MNHN-Tree-Tools on two experimen-
tal datasets: α-satellite repeats from the Hu-
man Genome (hg38) as annotated by Uralsky
et al. [19] and a genetic barcoding dataset that
contains the 16S/18S ribosomal RNA sequence
for many species from the SILVA ToL project
[14].

3.1.1 Human α-satellite sequences

Uralsky et al. have published a set of anno-
tations to the α-satellite sequences found in
the human genome (hg38) [19]. These anno-
tations were performed using the PERCON
tool [11]. Curious to see how our density
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Figure 4: Algorithmic details: Left: Algorithm flow chart outlining the different steps of
our algorithm. Right: The tree building procedure that links the clusters for different ε values
together forming a tree.



based approach would classify, detect fami-
lies in such a dataset we downloaded all an-
notated sequences. The obtained DNA se-
quences were transformed into 5-mer frequency
vectors. PCA was performed and the 5-mer
vectors were projected onto the 7 largest, in
terms of associated eigenvalues, principal com-
ponents. Our tree building algorithm was per-
formed on this 7 dimensional subspace, with
the parameters: initial ε = 0.2, ∆ε = 0.001
and minpts = 10.

MNHN-Tree-Tools yielded a full ”phylo-
genetic” tree that differentiated major well
known classifications of α-satellite sequence
groups. Figure 5 outlines the full tree ob-
tained as well as colored branches according
to original annotations found in the dataset
which follow the notation originally proposed
by Alexandrov et al. [1].

Most interestingly our results go beyond this
initial classification and highlight a fine grained
detail of subfamilies, under the herein men-
tioned definition, that constitute the families
under the classic definition.

3.1.2 16S/18S RNA sequences from the
Tree of Life

In order to test our algorithm on barcoding
applications we obtained the SILVA [14] ToL
dataset. The dataset contains 16S/18S RNA
sequences provided with a detailed annotation
that we extracted directly from the provided
FASTA file. From these annotations the first
six levels were taken into account. We built
a tree from these annotations beginning with
Archeae, Bacteria, Eukaryota on the first level
and going down to 13413 different clades found
in the sixth and last level that we considered.
The resulting tree is shown in figure 6. We used
MNHN-Tree-Tools to build a tree from the
dataset. Hence, the sequences of SILVA [14]
dataset were transformed into k-mer vectors
and PCA was performed. The k-mer vectors

were projected onto the first 7 principal com-
ponents and our algorithm has been applied on
the resulting data. The parameters used were
initial ε = 0.1, ∆ε = 0.05 and minpts = 3. The
resulting tree is highlighted in figure 7.

3.2 Tree quality determination using
known partitions

Comparing two partitioned datasets is an in-
herent difficult task. Several measures such
as the F-measure [3], Jaccard [9] or Fowles-
Mallows index [7] have been proposed to com-
pare two partitions of a set of points. In our
case the system is governed by an increased
complexity as we are handling partitions that
are incomplete as points below a certain cho-
sen density for a stage in our tree are not at-
tributed to any cluster by the DBSCAN algo-
rithm. An additional difficulty that we face is
that a single tree contains numerous partition
layers (or levels). We thus need to compare the
partitions found for each of these layers with a
the given ground truth partition.

In order to evaluate the qualities of our trees
we define:

• Pure clusters: Clusters that only con-
tain sequences which belong to the a single
cluster in the ground truth set.

• Impure clusters: Clusters which con-
tain sequences that are a mixture of se-
quences from different clusters in the
ground truth set.

With such a definition we are naturally inter-
ested in the following questions:

1. How many pure and impure clusters do we
count?

2. Does the total number of detected clusters
corresponds to the number of clusters in
the ground truth dataset?
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Tree of 
Full Dataset of 

Human α-Sattelites
as of Uralsky et al. J1 - J2 D1 - D2 

R1 - R2 M1+ UM

Figure 5: MNHN-Tree-Tools applied on human α-satellite sequences: The figure shows
six sub-trees. We outline the performance of our algorithm to classify α-satellite sequences found
in the human genome as annotated by the track provided by Uralsky et al. [19] and highlight the
full tree in the upper row on the left. For the following panels the number of sequences that are
grouped in each branch of the tree is indicated by the opacity of each line on a logarithmic scale
from white, indicating few sequences, to full opaqueness, indicating all sequences. Additionally
we color-annotated sequences families using the original annotation [19]. We outline how the
highly conserved families D1, D2, J1 and J2 are clearly distinguishable and how older families
such as R1 and R2, M1+ and UM are found to be spread out across branches and closer to the
root of the tree. Families W1 to W5 and XM are not outlined in separate trees.
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Figure 6: Representation of the tree derived from the annotations in the Silva dataset
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Figure 7: Tree inferred by MNHN-Tree-Tools applied on the SILVA dataset: Colors
in the figure correspond to archeae, bacteria and eukaryota. Additionally we zoomed into the
holozoa clade highlighting the branch containing the Homo Sapiens species.



3. In the case where we find impure clusters,
how much of a mixture of clusters from
the ground truth dataset are they?

To cover all these points we define the following
indices to describe the quality of a tree and its
clusters. l being the layer under scrutinization
in the tree:

1. The “impures over total” index: An-
swers the first question in yielding the ra-
tio of impure over the total number of
clusters:

Il =
nl,imp

nl
, (10)

where Il in the limits is either, 0: all clus-
ters are pure, or 1: all clusters are impure.

2. The “number of clusters correspon-
dence” index: Responds to the second
question. One of the important advan-
tages of using a tree based clustering tech-
nique over traditional algorithms is that
one can find a tree layer for which the
number of clusters corresponds closely to
the number of clusters in a ground truth
dataset. This index is also important as
the dataset might exhibit for instance a
high number of pure but small clusters
with many more partitions as one might
expect and hence, an unwanted result. As
such we define:

Sl =
|nl − ntarget|

ntarget
, (11)

where nl is the number of clusters in layer
l and ntarget the number of clusters in the
ground truth dataset. Hence, the optimal
values might be close to 0.

3. The “pureness” index covers the third
point. This index is computed only taking
impure clusters found in the dataset into
account. It was largely modeled around
the idea of recall as it is used in tradi-
tional machine learning. As we use the

DBSCAN algorithm, and as such neglect
datapoints in regions below a defined den-
sity at different tree layers as we search
for partitions, we had to create this in-
dex, as to our knowledge, traditional in-
dices can not handle partitions of differ-
ent data sizes. The last term of equation
(12) is similar to a classical recall which
has been adapted to measure the amount
of ground truth clusters mixture found in
each impure cluster. We define:

Pl =
1

nl,imp

nl,imp∑
i=1

ntarget∑
k=1

f<50%
l,i,k

Cl,i
, (12)

where l represents the layer of a tree, nl,imp

the number of impure clusters, ntarget the
number of partitions in the original truth
dataset, f<50%

l,i,k the number of elements be-
longing to partition k of the truth dataset
in the impure cluster indexed by i in layer
l, if and only if this number represents less
than 50% of the elements in the impure
cluster. Otherwise f<50%

l,i,k represents the
total number of elements in the impure
cluster minus the elements in this cluster
that belong to the partition of the truth
dataset that is indexed by k. Finally Cl,i

represents the total number of elements in
the impure cluster in layer l indexed by i.
As the last term is similar to the widely
used classical recall function, we could also
state that this formula describes an aver-
age of recalls computed for each clusters
and adapted to our problem. f<50%

l,i,k

Cl,i
is

equal to 1 if a detected cluster is a per-
fect mixture of ground truth clusters, and
is lower than 1 otherwise. What we call a
perfectly mixed cluster a cluster that con-
tains half of the elements of one ground
truth cluster and the other half of the el-
ements of another ground truth cluster,
or three thirds of three different ground
truth clusters, etc. The more pure, i.e.
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the less perfectly mixed, a cluster is the
more this value tends towards 0. An illus-
trative example of how the pureness index
is calculated is shown in figure 8.

3.3 Quality evaluation of MNHN-
Tree-Tools results by comparison
to ground truth

3.3.1 SILVA tree ground truth against
MNHN-Tree-Tools

We start by comparing the different layers of
the SILVA tree as shown in figure 6 to the tree
inferred by MNHN-Tree-Tools shown in figure
7.

As already outlined in section 3.1.2 we inves-
tigated the first 6 layers of annotations found
in the FASTA file provided with the SILVA
dataset [14]. We removed all clusters contain-
ing less than 10 sequences from our SILVA
ground truth tree. This removal yields for the
first 6 layers the following number of resting
clusters: 3, 102, 266, 658, 1278 and 3231 clus-
ters. Knowing that layer 6 without such a sup-
pression contains 13413 different unique anno-
tations we did not consider this layer in the fol-
lowing analyses. The SILVA tree built from ex-
pert annotations provides the ground truth to
which we compare the tree inferred by MNHN-
Tree-Tools using the quality indices outlined in
section 3.2. From the inferred tree, we also re-
moved all clusters containing less than 10 se-
quences. The removal of clusters with less than
10 sequences in both the ground truth and de-
tected sets allows us to drastically speed up the
calculation of our quality measurement indices.
The first 5 layers of the SILVA tree ground
truth were compared with different tree layers
obtained at different ε values and hence, den-
sities inferred using our adaptive MNHN-Tree-
Tools approach. The results of this comparison
are outlined in table 1.

3.3.2 SWARM2 ground truth against
MNHN-Tree-Tools

In the next step we compared our results ob-
tained by MNHN-Tree-Tools to the clustering
given by the SWARM2 [13] tool using the three
quality indices outlined in section 3.2. In this
case the partition provided by SWARM2 pro-
vides the ground truth for the comparison, and
the entire tree inferred by MNHN-Tree-Tools
is compared to this ground truth. The ground
truth partition derived by SWARM2 contains
9540 clusters. Clusters that are smaller than
10 sequences have been removed. The results
for the quality comparison to SWARM2 is out-
lined in table 2.

3.3.3 SILVA tree ground truth against
SWARM2

To make the above comparison more interest-
ing we not only calculated how well MNHN-
Tree-Tools reproduces in its tree layers the
clusters found by SWARM2, but also used our
quality measurement indices (c.f. section 3.2)
comparing the original SILVA expert annota-
tions to SWARM2 results. As such the first 5
layers of the SILVA tree as built from the ex-
perts annotations were compared to the clus-
tering of SWARM2. The results of this com-
parison are outlined in table 3.

3.3.4 Quality evaluation results

Comparing table 1 and 3, we clearly see one
advantage of our multilayer tree approach.
SWARM2 only yields a single partition with a
number clusters that does not match to any of
the ground truth layers. This is an expected
result as the primary goal of SWARM2 is to
detect single species Operational Taxonomic
Units (OTUs). MNHN-Tree-Tools by contrast
finds a sweet spot yielding approximately as
much clusters as each of the initial layers at
one of its layers as shown in table 1.
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Ground truth

Detected partitions

pure
cluster

pure
cluster

impure
cluster

mixture of 2
partitions

impure
cluster

mixture of 3
partitions

pure
cluster

Clusters in Ground Truth = 6

Total Impures = 2
Total Pures = 3

Total Clusters = 5

1/3+1/3 = 2/3 1/7+1/7+2/7 = 4/7Local (im)pureness:
fraction for < 50%
for each target cluster

fraction for < 50%
for each target cluster

(Im)Pureness = 1/2(2/3+4/7) = 13/21 ~ 0,62
Cluster Correspondance = |6-5|/6 = 1/6 ~ 0,17

Impures/Total = 2/5 = 0,40

Figure 8: Illustration on the use of our validation indices: Two partitions, the ground
truth and a detected partition, a single tree layer, are compared. The number of clusters is
6 and 5 respectively. Hence, the cluster correspondence yields 0.17. Further we count 3 pure
clusters and 2 impure clusters obtaining an impures over total index is thus 2/5. For the two
impure clusters, the ”pureness” is respectively 2/3 and 4/7. The ”pureness” index is thus 0.62.
.
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ε Pureness No CC Imp/Total ε Pureness No CC Imp/Total
Layer 1 Layer 2

4.90 0.22 1.33 0.14 2.00 0.28 0.42 0.17
5.35 0.22 1.00 0.17 2.05 0.28 0.28 0.17
5.45 0.22 0.67 0.20 2.10 0.31 0.18 0.16
5.50 0.22 0.67 0.20 2.15 0.36 0.07 0.15
5.70 0.22 0.33 0.25 2.20 0.33 0.01 0.15
5.95 0.22 0.00 0.33 2.25 0.36 0.04 0.16
6.05 0.22 0.00 0.33 2.30 0.48 0.15 0.13
7.20 0.22 0.67 1.00 2.35 0.44 0.26 0.14

2.40 0.41 0.31 0.16
Layer 3 Layer 4

1.45 0.31 0.84 0.18 1.25 0.36 0.69 0.28
1.50 0.31 0.53 0.17 1.30 0.34 0.43 0.26
1.55 0.34 0.29 0.17 1.35 0.33 0.17 0.26
1.60 0.33 0.16 0.19 1.40 0.31 0.06 0.25
1.65 0.32 0.04 0.19 1.45 0.31 0.24 0.23
1.70 0.32 0.19 0.19 1.50 0.31 0.37 0.22
1.75 0.28 0.29 0.18 1.55 0.33 0.47 0.21
1.80 0.30 0.39 0.16

Layer 5
0.10 0.88 0.21 0.03
0.25 0.86 0.22 0.03
0.30 0.82 0.18 0.03
0.75 0.29 0.07 0.20
0.80 0.30 0.15 0.23
0.85 0.32 0.22 0.26
0.90 0.33 0.30 0.29

Table 1: Comparison between annotated groups in different layers of the SILVA
dataset and MNHN-Tree-Tools results: Pureness, Number of Cluster Correspondence,
and number of Impure over Total number of cluster is shown. Note that Pureness only reflects
the Pureness of Impure clusters.
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The sweet spots for each ground truth layer
are in detail outlined in table 1. They are
found around the regions where the middle col-
umn, which highlights the Cluster Correspon-
dence index outlined in equation (11), tends
towards 0. Nevertheless, the minimum alone
of this Cluster Correspondence index is not
sufficient. Considering the two other indices,
shown in equations (10) and (12), the optimal
MNHN-Tree-Tools-tree layer that corresponds
best to the expert annotation might be in a
close region around the best Cluster Corre-
spondence index result where all three indices
approach small values. As expected we iden-
tify that inner layers of the original SILVA an-
notation are found around at larger ε values
and hence the clusters are less dense connected
than the outer layers where the sweet spots,
where all three indices approach small values,
occur at smaller ε values and as such at denser
regions. We further see that the found statisti-
cal clusters in specific layers found by MNHN-
Tree-Tools closely correspond to the ground
truth. We refer the reader to our hands on
example outlined in figure 8 that describes the
indices shown in tables 1, 2 and 3 in detail.
Figure 8 should further aid the reader in eval-
uating these indices.

4 Simulation and Investiga-
tion of Properties

4.1 Simulation: Outlining Differ-
ences in Distance Measures

We compared the different distance measure-
ments, L1, L2, Smith-Waterman like [15] and
L2 projected on a 7 principal components sub-
space, by applying MNHN-Tree-Tools and its
algorithms on simulated datasets.

As such we developed a sequence generator
that provides datasets with the following prop-
erties: All sequences are 100 bases pairs long.

ε Pureness No CC Imp/Total
2.10 0.31 0.18 0.16
2.15 0.36 0.07 0.15
2.20 0.33 0.02 0.15
2.25 0.36 0.04 0.17
2.30 0.48 0.15 0.13
2.35 0.44 0.26 0.14
2.40 0.41 0.31 0.16
2.45 0.46 0.41 0.12
2.50 0.52 0.52 0.11
2.55 0.48 0.54 0.10

Table 2: Reproduction of SWARM2 clus-
tering of the SILVA dataset by MNHN-
Tree-Tools: Pureness, Number of Cluster
Correspondence, and number of Impure over
Total number of clusters is shown. Note that
Pureness only reflects the Pureness of Impure
clusters.

Layer Pureness No CC Imp/Total
1 0.14 1.00 0.33
2 0.11 0.99 0.50
3 0.10 0.97 0.42
4 0.13 0.93 0.39
5 0.17 0.87 0.41

Table 3: SWARM2 accuracy on the
SILVA Tree: Shown are: Layer of the
SILVA tree (ground truth), Pureness, Num-
ber of Cluster Correspondence, and number of
Impure over the Total number of clusters is
shown. Note that Pureness only reflects the
Pureness of Impure clusters.



There are 10000 sequences in total in the gen-
erated dataset. We use a pseudo number gen-
erator together with a variable seed value to
create an initial sequence. This sequence is
then copied 1000 times. After this copying
process the ensemble of 1000 sequences under-
goes X single nucleotide mutations. Creating
a second evolutionary family (c.f. section 2.2)
a sequence is randomly selected from the 1000
sequences and again copied 1000 times. The
new ensemble of 2000 sequences now under-
goes 2X single nucleotide mutations. Again a
sequence is chosen from the last 1000 sequences
copied to create 3000 sequences which then un-
dergo 3X mutations. The entire procedure is
repeated until 10000 sequences are generated.
The whole approach should yield 10 evolution-
ary families consisting of 1000 sequences each.
We remark that this approach further yields
us older sequences corresponding to the first
batch of 1000 sequences while the youngest se-
quences are found in the last batch of 1000 se-
quences.

Using a custom in house built verification
tool, which we ship as a part of MNHN-Tree-
Tools, that allows us to check whether our algo-
rithm is able to find clusters containing exactly
1000±20% sequences corresponding to the 10
evolutionary families, created by the procedure
described above, in at least one layer of the re-
sulting tree, we are able to verify the capture
of simulated evolutionary families in statistical
clusters.

We created the following set of simulations:

• Set of simulations: 200 datasets start-
ing with 20 different seeds and setting the
mutation rate X to be of either: 10, 20, 50,
100, 200, 500, 1000, 2000, 5000 or 10000.
Generating this dataset we further assured
that at least one mutation happens be-
tween the template sequences that gener-
ates each batch of 1000 sequences in order
to create new families and not family ex-

tensions.
The datasets were processed with the adaptive
clustering approach of MNHN-Tree-Tools. In
the case of k-mer / PCA based distance mea-
sures the input values: ε = 0.4,∆ε = 0.05 and
minpts = 3 were used. For Smith Waterman
based tree evaluations we resorted to the input
values: ε = 5, ∆ε = 1 and minpts = 3. The
best result where most simulated evolutionary
families were correctly recovered as statistical
clusters were obtained as we used the L2 norm
in a 7 dimensional subspace spun by principal
components obtained from a 5-mer represen-
tation of the dataset. A change prior PCA to
a 4-mer or 6-mer representation did not yield
significant better results. Results for L1 or L2
distances directly applied without performing
PCA on the k-mer vectors yielded significantly
weaker results capturing less evolutionary fam-
ilies as statistical clusters. Smith-Waterman
distance based results proved to find less of the
10 supposed clusters than a L2-PCA based ap-
proach. The feature selection advantage that
PCA provides is the crucial factor here. Re-
sults comparing the L2-PCA based approach
with the Smith-Waterman approach are out-
lined in figure 9. Figure 9 reports the number
of evolutionary families identified as statistical
clusters. In the k-mer / PCA based evalua-
tions projections of k-mers down to the first 7
principal components was performed. For dif-
ferent k values evaluating k-mers we see that
4-mers detect fewer clusters at mutation rates
X > 1000 as shown in figure 9. No improve-
ment of efficiency in using 6-mers over 5-mers
has been found for the sequence lengths simu-
lated.

4.2 Simulation: Trees, Diffusion,
Distances

The simulations outlined in the previous sec-
tion provided us with the important informa-
tion on family capture under different distance
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Figure 9: Differences in distance mea-
sures: The capture of 10 simulated evolu-
tionary families at different mutations rates X
for different k-mer lengths and PCA based se-
quences spaces as well as for a Smith Water-
man based sequence space.

measures, and have shown us the clear advan-
tage provided by the feature selection of PCA.

In this section we are going further and show
how our algorithm clearly distinguishes prox-
imal families whose consensus sequence only
differs by a limited number of mutated base
pairs. As such we performed 400 simulations
of 10000 sequences that are 100 bases pairs
long. The 10000 sequences are composed of
two families of 5000 sequences that undergo
for the first 5000 sequences N mutations and
for the second half of 5000 sequences 2N mu-
tations. The two families of 5000 sequences
were initialized with two template sequences
that differ in d nucleotides. The following pa-
rameters were chosen for the simulations: N =
[500, 1000, 2000, 10000, 20000, 50000] and d =
[1, 2, 3, 4]. 20 simulated datasets from pseudo
random templates were created for each com-
bination of N and d, totalling 400. These in-
put sets were treated with our adaptive cluster-
ing algorithm and hence, the sequences where
converted to 5-mer frequency vectors. PCA
was performed on these 5-mer vectors and our
adaptive clustering algorithm ran using the L2
norm applied on the 7 dimensional subspace
spun by the 7 principal components with the 7
largest corresponding eigenvalues. Trees from
the results were built. For this run input val-
ues of ε = 0.4, ∆ε = 0.05 and minpts = 3 were
chosen. The trees highlight their number of
total sequences in a logarithmic gradient from
white to dark, further the two different fam-
ilies where colored blue and orange, and are
clearly visible as the two darkest traits in most
of the trees. Black areas in the tree are clusters
that combine sequences of both families. The
results are highlighted in figure 10. From this
figure we see that the algorithm excels in the
upper left area as the two families almost im-
mediately separate at the root of the tree. The
algorithm begins fail to clearly distinguish the
two generated families in the lower right sec-
tion as the sequences of both evolutionary fam-



ilies do not form clear distinguishable branches
anymore, marking the limit of the approach
presented herein.
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